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1. ABSTRACT = i_ ' ....

The objective of this paper is to compare two closely-related methods for aerodynamic design

optimization. The methods, called the "implicit gradient" approach and the "variational" (or

"optimal control") approach, both attempt to obtain gradients necessary for numerical optimization

at a cost significantly less than that of the usual black-box approach that employs finite difference

gradients. While the two methods are seemingly quite different, they are shown to differ

(essentially) in that the order of discretizing the continuous problem, and of applying calculus,

is interchanged. Under certain circumstances, the two methods turn out to be identical. We

explore the relationship between these methods by applying them to a model problem for duct

flow that has many features in common with transonic flow over an airfoil. We find that the

gradients computed by the variational method can sometimes be sufficiently inaccurate to cause

the optimization to fail.

2. INTRODUCTION

We first define what we mean by "analysis" and "design" in the context of computational

aerodynamics. In the "analysis problem" we seek to determine the aerodynamic flow, given a

description of the geometry of an airfoil or aircraft. In the "design problem" we seek to do the

inverse; given the flow, find the geometry that will produce it. Here, we are concerned with

methods for solving the design problem that are based on coupling solutions of the discretized

analysis problem with numerical optimization procedures.

In a previous paper [4] we compared three optimization-based approaches for solving com-

putational aerodynamics design problems. (Actually, the methods apply to many computational

physics design optimization problems.) The optimization methods are (i) the common "black-

box" method with finite difference gradients, (ii) a modification where the gradients are found

by an algorithm based on the implicit function theorem (hereafter called the implicit gradient ap-

proach), and (iii) an "all-at-once" method where the flow and design variables are simultaneously

altered. We also showed that the implicit gradient approach was very closely related to a partic-

ular "variational" or "optimal control" approach to design optimization that has recently attracted

interest (e.g., [5]). The purpose of the present paper is to further explore this relationship. (We

note that the close relationship between nonlinear optimization and optimal control has apparently

been known for some time[2][6]. However, this relationship appears to be little-known among

practitioners in applications disciplines utilizing these mathematical techniques.)

The finite difference approach to obtaining gradients is conceptually the simplest, but it is

ordinarily prohibitively expensive for practical problems, since it requires at least one solution

of an analysis problem for each design parameter. Both the implicit gradient approach and
/

kthe variational approach have the objective of determining gradients needed in an optimization_
.A
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procedure at a significantly reduced cost. Both approaches involve using "calculus-like" operations]

to derive the formulas employed in finding the gradients. As explained later, the procedures differ

in that the order of applying calculus, and of discretizing the continuous problem, are interchanged.

Because the implicit gradient approach applies to an already discretized analysis problem, it can be

used to "retrofit" many analysis codes to produce inexpensive gradients for design optimization;
see [7] for details.

3. MODEL PROBLEM

3.1 Continuous Analysis Problem

In [4] we showed how the steady flow of an inviscid fluid in a duct of variable cross-sectional

area A((), governed by the Euler equations, can (under certain circumstances) be reduced to the

single nonlinear ordinary differential equation

h+g=o (a)

where
A_

f(_) _=u + H/u, g(u, _) - _(_, - H/_,),

u(_) is the fluid velocity, ( is distance along the duct, and _ and H are given constants. Here, the

subscript ( means differentiation with respect to (. While a much more careful specification was

given in [4], roughly speaking the continuous analysis problem is to find u, given a differentiable

area function A(_) and the specified boundary values u(_ = 0) and u(( = 1). These boundary
values are chosen so that the (weak) solution of (1) contains a shock.

3.2 Discrete Analysis Problem

Let the (-coordinate be discretized by a uniform, cell-centered grid with centers at _j =

(j - 1/2)h, A_ = l/J, where J is the number of unknown grid values. Let U./ represent a
piecewise constant approximation to u on each grid cell. Then, a conservative difference scheme

for (1) is given by

fj+l/2 - fj-1/2
Wi - _X_ + gj = 0. (2)

Here the source term gj = g(Uj, (AJA)j) and we assume that the duct shape A(_) is given by a

piecewise cubic spline described in the B-spline basis with coefficients Dm for m = 1,2,..., M

and that A(0) and A(1) are fixed. (A_/A)j is obtained by evaluating the spline and its derivative

at _j. The boundary conditions on U are U0 = u(( = 0) and U./+I = u(( = 1). The fluxes

fi+r/2, as functions of Uj and Uj+I, are chosen to correspond to the Godunov, Engquist-Osher,

or Artificial Viscosity methods for numerically approximating hyperbolic conservation laws [4].

Once the discretization has been made, we are faced with solving a system of nonlinear

algebraic equations. The system is

Given: Din, m = 1,...,M (spline coefficients describing A(()).

Find: Uj satisfying

[_ w(u) = o. (31



69

Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences
_ICIDE$-IIII. Editor: G.S. Dulikravich. Washington D.C.. Octol_¢r 2_-2_, 1991,
I"

| Here W is the vector of discretized equations (2) for 3 = 1,2,..., a and the boundaryl

conditions on U.

3.3

3.4

cell

Continuous Design Problem

We want to formulate the design problem as a minimization problem. It is:

Given: a desired (or goal) velocity fi({).

Let: h(u)= 17(u(_)- fi(_))2 f(u)= f_ h(u)d_.

Find: A(_) such that u(_) satisfies (1) and f(u) is minimized.

Discrete Design Problem

We assume that a desired (or goal) velocity distribution Ui is given for each computational

in the analysis problem. Then we have

Given: Ui, j = 1,...,J.

Let: Y i : ._(y il _ _i)2 F(U) = ZJ=l Hi .

Find: Din, m = 1,2,..., M (spline coefficients describing A(_)) such that (3) is satisfied

and F(U) is minimized.

4. COMPARISON OF THE IMPLICIT GRADIENT APPROACH AND

THE VARIATIONAL APPROACH

In this section, we compare two closely-related, optimization-based approaches to finding an

approximate solution to the "Continuous Design Problem" posed above. In each case, function

values needed in the optimization are obtained by solving a discrete analysis problem and

evaluating a discrete form of the objective function (and constraints). The key question is how

gradients needed in the optimization are computed:

1. Implicit gradient approach. Discretize the problem first to obtain the "Discrete Design

Problem," then find a formula for the gradients by using the implicit function theorem.

2. Variational (or control theory) approach. Find a formula for the "gradients" for the

continuous problem (i.e., in infinite dimensional space). This formula involves the solution

of the analysis problem, and the solution of another differential equation called the adjoint

problem. Discretize both the forward and adjoint problems, then evaluate the formula to get

the gradient.

After the gradients are obtained, the function values and gradients are used in an optimization

procedure to improve the current estimate of the design variables. As can be seen, these ap-

proaches differ, essentially, in that the order of discretizing, and of doing calculus-like operations,

is interchanged.

4.1 Implicit Gradient Approach

The implicit gradient approach is a natural extension of the usual black-box method wherein

gradients needed in the optimization are obtained by finite differences. We thus first introduce the

black box method. We do so in a somewhat general setting, then specialize to the model problem.

We assume that the design problem has already been discretized. Let nu and ri D be the/

[number of flow variables U and design variables D, respectively. (In the duct flow model[
,..1
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Fproblem, the flow variables are the velocities, and the design variables are the spline coefficients]

describing the geometry.) Then we seek to solve

minimize F( D) ,

D C R.no

subject to C(D) >_ 0 ,

(4)

where F(D) is the objective function and C(D) is a vector of mD constraint functions. In the

black-box method, each evaluation of F(D) requires a solution by the analysis code.

For simplicity, the unconstrained version of (4) is considered below. However, the results

apply to the constrained problem as well.

As in our model problem, the function F will often be formulated in terms of the flow

variables U. In this situation, F is dependent on the design variables D in an indirect manner.

That is, the flow variables U are linked to the design variables D via the discretization of the

differential equations, since the flow variables will change when the geometry is altered. In the

general case, F will have both a direct dependence on D and an indirect dependence on D, due to

the dependence of U on D. Thus, one could consider the objective function to be F(U(D), D).

The term U(D) indicates that, given D, the value of U is obtained by solving an analysis problem.

Assume that the analysis problem has been discretized (as in Section 3.2) so that an analysis

consists of solving a system of nonlinear equations. In this case function evaluations for the

black-box method are computed as follows. Given a design specified by D, the analysis code

solves W(U) = O, where U is the vector of nu flow variables and W is a vector of nu nonlinear

equations. Since the analysis problem is an implicit function of D it can be viewed as solving

W(U, D) = 0 (5)

for U, given a design specified by D. When gradients are obtained by finite differences, each

component of D is successively perturbed, and (5) is re-solved to get a perturbed value of U.

We now review how gradients can be obtained without recourse to finite differences. Suppose

that U and D are considered as subsets of the nu + nD vector X given by

X=( U ] D); (6)

the Jacobian (first-derivative) matrix of (5) is then

J Ju I Jo , (7)

I

where J is nu x (nu + nD), Ju is the nu x nu Jacobian with respect to the flow variables and

Jo is the nu x no Jacobian with respect to the design variables. (The partitioned view of the

Jacobian implies nu >> no; this will usually be the case.) Note that Ju is sometimes available

in analysis codes, especially those based on Newton's method and variants. Jo may, or may

not, be easily obtainable. (The availability of Ju and Jo in computational aerodynamics codes

is discussed in [7].)

Consider the function F'(U, D), where /e, is the same as the black-box method objective

function F, except that U and D are considered to be independent of each other. The function
I ._

L/_'(U, D) is then equivalent to the black-box method objective function F(U(D), D) only wher_
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_(5) is satisfied. The gradients VD/7(X) and Vu _b(X) are ordinarily "easy" to obtain because-]

of the assumed independence.

However, the optimization code requires VDF, the gradient of the black-box objective

function F with respect to the design variables D. As shown in [4], this gradient is given by

VDF(X) = VO1_(X)- JT JuT VU ['(X) . (8)

Here, superscript T indicates transpose. The derivation of (8) assumes that we are at a solution

of (5).

The following algorithm could be used for computing VDF using (8):

i. Compute Vu/_' and _7D/_"

ii. Solve jTA = -VuF for A

iii. Compute V DF = V ob" + jT A.

Note that the minus sign is associated with the second step of the algorithm to facilitate

comparison with the variational approach later. Note also that, if it is difficult to solve linear

systems with the matrix JuT, the linear algebra in (8) can be rearranged as (JuIJD)TVuF(X),

requiring nD solves with Ju. Observe that Ju1Jo is the matrix of "sensitivities" of the solution

U with respect to the design variables D.

We now apply this algorithm to the model problem and give a complete specification of one

evaluation of a gradient during the optimization.

Implicit gradient algorithm for model problem:

1. Given the current estimate of the design variables Din, solve the discrete analysis problem (3).

2. Compute Vu 1_' = U - U and _7D/7 = 0.

3. Given the Jacobian Ju of the discretized flow equations with respect to the flow variables U,

evaluated at the solution, solve JuTA = -(U - U) for A

4. Given the Jacobian Jo of the discretized flow equations with respect to the design variables

D, evaluated at the solution, compute the gradient VDF = jTA

/

4.2 Variational Approach

In the variational approach, we deal first with the "Continuous Design Problem," and use

calculus to derive an infinite dimensional "gradient." We then discretize the problem. Since it

is somewhat cumbersome to

model problem immediately.

For technical reasons that

differential equation (1) with

present the methodology for a general case, we specialize to the

will become apparent later, it is desirable to augment the governing

an artificial viscosity term _u_, giving

d) = + h + g(u, d) = O. (9)

Here, d(_) is a function that controls AJA.

Recalling that h(u) = ½(u(_) - fi(_))2, the Lagrangian is

f0' f0'
L = h(u)d_ + A(_)w(u, d)d_, j
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_d )_(_) is an adjoint function that is the continuous analogue of Lagrange multipliers. Applying I

the calculus of variations, and doing the usual integration-by-parts, we find that the variation of

the Lagrangian is

5L = [-e(Adiu_- A_5u)+ 8(Af)]' 0

/01 /0+ - + + hu) ud + Awe(,Sd)d .

(Note we = gd.) The second term can be made to vanish by requiring that the adjoint equation

-eA_ - f,,A_ + g,,t = -hu (10)

be satisfied. In (10), fu,gu, and hu are given functions of (, since they are evaluated at u((),

the solution of (9). The integrated term []_ vanishes since 5u(O) = 8u(1) = 0 and we choose

)_(0) = A(1) = 0 as the boundary conditions on the adjoint )_. Then, the "gradient" of the

continuous design problem with respect to changes in the controlling function d is expressed by
the variational formula

6f = AWd( rd)d_. ( 11)

We now need to discretize (9), (10), and (11). We assume that (9) is discretized by one of

the methods described in Section 3.2. Thus, the discretization of the analysis problem is assumed

here to be the same as for the implicit gradient approach. (In general, of course, this need not be

so.) While those discretizations (the G-, EO, and AV-schemes) are designed to solve the inviscid

(e = 0) equation, they in fact all incorporate some kind of artificial viscous effects, either by

upwinding (G and EO) or by explicit artificial viscosity (AV). That is why we added the viscous

term in (9): so it would appear in equation (10), and thus guide us to reasonable discretizations

of the adjoint equation.

Let the computational grid be as described in Section 3.2, and Aj be the approximation to )_

on the grid. Noting that hu = u - _, let us take the discretization of the (10) to be given by

BA = -(U- U),

where the difference operator B remains to be specified. Note that this equation is linear in A

since (10) is linear in A.

Finally, to discretize (1 l) we could use any reasonable quadrature formula. However, we

choose to use the rectangle rule, which gives for the k-th component of the gradient

J

(VDF)k = Z(W,)D A,
j=l

Here, (Wi)D k is the derivative of the j-th discrete flow equation with respect to the k-th design
variable. In matrix notation, this is none other than

VDF = jTA,

SO we have again deliberately chosen the discretization to agree with Step 4 of the implicit

dient algorithm. J
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| Gathering these pieces together, a complete specification of one evaluation of a gradient in]

an optimization procedure is given below.

Variational algorithm for model problem:

1. Given the current estimate of the design variables Din, solve the discrete analysis problem (3)

2. Compute VuF = U- U and VD/> = 0.

3. Solve the discrete adjoint equation BA = -(U - U) for A

4. Given the Jacobian JD of the discretized flow equations with respect to the design variables

D, evaluated at the solution, compute the gradient VDF = JTDA

As we have constructed this algorithm, it differs from the implicit gradient algorithm only

in step 3. The two procedures are identical if we choose B = JuT, the transpose of the Jacobian

of the analysis problem, evaluated at a solution of the analysis problem. Looked at another

way, a particular choice of a discretization of the analysis problem, and the associated Jacobian

Ju, suggests a specific choice of the discretization B of the adjoint problem, namely B = dT.

Pursuing this idea, let (Ju)G,(Ju)EO, and (Ju)AV denote the Jacobians associated with the G,

EO, and AV schemes for the analysis problem, respectively. Then three possible discretizations

of the adjoint are given by B = (Ju)T,B = (Ju)T o, and B = (Ju)TAv. We note that two of

these, (Ju) T and (Ju)TEo , do not correspond to obvious discretizations of the adjoint equation

(10). This is largely due to the careful treatment of "sonic points" (points where f_, = 0) and
shocks in the G and EO schemes.

Let us call the discretizations of the forward and adjoint problems incompatible if B _ JuT.

This means that the discrete analysis problem and the discrete adjoint problem are not discretely

adjoint. It is precisely the effect of such incompatibility that we want to test. Thus, to carry out

such tests we may solve the forward problem with (say) the G-scheme, but choose the adjoint

discretization to be B = (Ju)To. Such comparisons will be pursued in the Numerical Results

section, below. There, we will use the notation [G, (Ju)To] to refer to such a combination.

We may also look at (10) directly and ask "what is a good way to discretize this differential

equation?" It turns out that, for our model and test cases, f,, changes sign once, and g,, > 0.

For small e, (10) is thus a singular perturbation, two-point boundary value problem with a

turning-point. A good numerical method for such problems is the E1-Mistakawy-Werle scheme;

a complete specification of this scheme, and an analysis which applies directly to the cases tested

below, is given in [1]. That analysis shows that, for our test cases, the adjoint function A is

"smooth" in the interior of the domain and has boundary layers at both ends. We will refer

to this scheme for solving (10) as the EMW scheme. (In the results presented later, we took

e = 10 -5 and used linear interpolation to move between the "point-centered" grid natural to the

EMW scheme and the "cell-centered" grid used in the analysis solvers.)

4.3 What is the "correct" gradient?

When we use the variational formulation described above, and we choose B to be anything

other than duT, we will obtain a gradient different from the one obtained by the implicit gradient

approach. This raises the issue of which gradient is "correct." There are two different philosophical

points of view. The first holds that, since we are really computing an approximation to the

continuous design problem, both gradients represent different approximations to the "continuous

gradient," and hence neither is correct. The second holds that, irrespective of the continuous

Problem, our goal in computation is to solve the discrete design problem. We are more inclined

o adopt the second point of view. Thus, we feel that (modulo finite precision arithmetic) th_
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_mplicit gradient is the correct one, and that the variational formulation only yields the correct-]

gradient when the particular discretization of the adjoint represented by B = jT is chosen.

5. NUMERICAL RESULTS

In this section we present numerical results obtained by solving the discrete design problem

for duct flow described in Section 3, utilizing gradients computed by the implicit gradient and

variational methods of Section 4. As constructed in Section 4, these methods differ only in step

three of the algorithms, and they are identical if in step three of the variational algorithm we

choose B = Jff, the transpose of the Jacobian of the discrete analysis problem with respect to the

flow variables. The specific algorithm used below is thus specified by the choice of/3. We will

first outline the optimization methods and test cases used. Then we will report on some tests using

controlled amounts of gradient error, and compare the implicit gradient and variational methods.

5.1 Optimization Methods

The basic optimization code used was NPSOL version 2.0, a product of the Systems

Optimization Laboratory, Stanford University. NPSOL is an implementation of the Sequential

Quadratic Programming (SQP) method. NPSOL 2.0 computes a secant approximation to the

Hessian (2nd derivative) matrix and the user supplies first derivatives. Results obtained with an

optimization method similar to steepest descent are not reported here, but may be found in [8].

5.2 Test Cases

For our tests, the design variables (called D in Section 4) were the B-spline coefficients

describing the duct geometry A(_). The two end values of A were fixed at A(0) = 1.050 and

A(1) = 1.745. Velocities along the duct were the flow variables (called U in Section 4) for the

duct design problem. We took or = 40 grid cells, so there were nu = 40 flow variables; this

gives resolution about equal to what might be expected in practical computations. The boundary

conditions were U0 = 1.299 and U41 = 0.506. In the optimization runs Newton's method was

used to solve the analysis problem (3), and the analyses were "warm started." That is, the initial

guesses for the flow velocities were taken to be the solutions from the preceding analysis. The

initial velocity profile for the first analysis in an optimization run was a linear profile connecting

the boundary conditions. The goal velocities U_- were the evaluations on the computational grid

of the analytic solution for a goal duct shape with a cross-sectional area given by a sinusoidal

perturbation of the linear duct. These area and velocity profiles are the curves marked (X) in

Figure 1. No constraints were imposed in these tests. Without constraining the geometry, it is

possible for the optimizer to generate designs that cannot be analyzed (the analysis problem has

no solution). In this case, we assign a large function value and return to the optimizer. The

optimizations were allowed a maximum of 70 major iterations, which is considerably more than

would be tolerable in practical use. (This corresponds, very roughly, to a maximum amount of

work equivalent to 1000 linear system solutions with the Jacobian of the analysis problem.)

The majority of the tests were conducted with n D = 2 design variables. For these tests, three

initial guesses for the design variables were selected. These three guesses yield solutions of the

analysis problem shown in Figure 1. A contour plot showing the dependence of the objective

function on the design variables is displayed in Figure 2. (This plot is for the AV-scheme; the

tPlots for the other schemes are similar.) Also shown are the locations of the optimum and of
he three initial guesses of D. The contour plot shows a narrow valley with steep sides and a[

_J
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[relatively flat bottom. Descending the steep sides corresponds (roughly) to getting the shock in]

the correct location; this has the largest impact on reducing the objective function and is relatively

easy for the optimizer. Moving along the valley bottom corresponds to getting the other details

of the velocity profile right. This is much harder to do. Thus guess 1 corresponds to a relatively

difficult problem, while guesses 2 and 3 correspond to problems that are somewhat easier.

5.3 Controlled gradient error tests.

Since we cannot directly control the gradient errors that are obtained when using incompatible

discretizations of the forward and adjoint problems, we first conducted some controlled gradient

error tests. In these tests we first obtained the correct gradient using the implicit gradient method,

and then added controlled amounts of random error to the gradient. The quantitative results

are given in [8]. We were surprised to find that the optimizations began to fail at fairly small

amounts (a few percent) of gradient error.

The trust region methods for step size determination in optimization used in [3] apparently

worked with a much higher level of relative error in the gradients. However, we found that trust

region methods were not much better then line search methods (like in NPSOL) when applied to

our model, which is apparently a "harder" problem than many standard optimization test cases.

5.4 Tests comparing the implicit gradient and variational approaches

We now proceed to compare results obtained with the implicit gradient and variational

approaches.

The optimizations were run with the twelve combinations of analysis and adjoint solvers

shown in Table 1. The discretizations of the analysis problem indicated by G, EO, and AV

correspond to the Godunov, Engquist-Osher, and Artificial Viscosity schemes (described in Section

3.2), respectively. The discretizations of the adjoint problem are as described at the end of

Section 4.2. Here, the notation B = (Ju)T means, for example, that the discretization of the

adjoint differential equation in step 3 of the Variational Algorithm is given by the transpose

of the Jacobian of the analysis problem when the Godunov scheme is used. The particular

combinations [G, (dv)_], lEO, (Ju)To], and [AV, (Ju)Tv] mean that the forward and adjoint

solvers are discretely adjoint, and thus that the implicit gradient method is being used. In all

other cases, the analysis and adjoint solvers are incompatible (not discretely adjoint).

The qualitative results of Table 1 show that the only reliable combinations of forward and

adjoint solvers are those corresponding to the implicit gradient method. There does not seem to

be any other discernible pattern in the results. An examination of more quantitative data, like

final value of the objective function and specific amounts of work used, also yield little additional

useful information. An examination of the gradients obtained by the variational method (not

discretely adjoint) shows that the relative error compared to the correct (implicit) gradient is often

more than a few percent, and that the gradients are in error both in direction and magnitude [8].

We carried out many of the same tests with an optimizer more like steepest descent, and also

with the objective function "smoothed" by a method suggested by Jameson [5]. Such smoothing

should reduce the impact of getting the shock location correct on the objective function. (It

broadens the valley of Figure 2.) The necessary modifications to the variational approach are

described in [8]. Again, we were unable to discern any pattern in the results: sometimes the

Lmodifications helped, sometimes they hurt. J
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| Additional test were carried out with nD = 10 design variables, and the same conclusion wasl

reached: the only reliable combinations of forward and adjoint solvers correspond to the implicit

gradient method. That is, the forward and adjoint solvers should be discretely adjoint.

6. CONCLUSIONS

We have shown that two seemingly quite dissimilar approaches to design optimization can,

under certain circumstances, be very closely related or even identical. The two approaches, the

implicit gradient method and the variational method, both result in gradient calculations that are

significantly cheaper than generating gradients by finite differences. The methods differ from

each other (essentially) in that the order of discretizing the continuous problem, and of applying

calculus, is interchanged. In the implicit gradient approach, the continuous problem is discretized

first, and a formula for gradients needed in the optimization is derived by applying the implicit

function theorem. In the variational method, calculus is applied first, and one then needs to solve

two differential equation problems: the analysis (or forward) problem, and the adjoint problem. If

the analysis problem is discretized the same way as for the implicit gradient approach, and if the

adjoint is discretized by a method that corresponds to the transpose of the Jacobian of the forward

discretization, then the methods are (modulo some details) the same. If the adjoint discretization

is taken to be anything else, then the two methods generate different gradients and the variational

method gradients are "in error." In our tests using a model for transonic duct flow, the gradient

errors were generally small, but were nevertheless sufficient to cause the optimizations to slow

down significantly or to fail altogether. For our model problem and optimization method, the

only reliable combination of forward and adjoint discretizations is the one corresponding to the

implicit gradient method.
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Figure 1: Area function A and corresponding velocity function U for Guesses l, 2, 3, and optimal solution (X).
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Table 1: Results obtained using NPSOL as the optimizer, for various combinations of forward and adjoint solvers. In

each cell, the three entries correspond to initial guesses 1,2, and 3 for the design variables. The designation (+) means

that the optimization converged to the correct solution. The designation (o) means that the optimization got "close,"

but did not converge. The designation (-) means that the optimization did not succeed in getting close to the solution.
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